
Enhancing Fine-Grained Parallelism

Chapter 5 of Allen and Kennedy

Optimizing Compilers for Modern Architectures

Fine-Grained Parallelism

Techniques to enhance fine-grained parallelism:
• Loop Interchange

S l E i • Scalar Expansion
• Scalar Renaming
• Array RenamingArray Renaming
• Node Splitting

Optimizing Compilers for Modern Architectures

Can we do better?
• Codegen: tries to find parallelism using transformations of loop

distribution and statement reordering
• If d l ith l t i i li d d l i • If we deal with loops containing cyclic dependences early on in

the loop nest, we can potentially vectorize more loops

• Goal in Chapter 5: To explore other transformations to exploit
parallelism

Optimizing Compilers for Modern Architectures

Motivational Example
DO J = 1, M

DO I = 1, N
T = 0.0
DO K = 1,L,

T = T + A(I,K) * B(K,J)
ENDDO
C(I,J) = T

ENDDO
ENDDO

codegen will not uncover any vector operations. However, by
scalar expansion, we can get:
DO J = 1, M

DO I = 1, N
T$(I) = 0.0
DO K = 1,L,

T$(I) = T$(I) + A(I,K) * B(K,J)
ENDDO
C(I,J) = T$(I)

ENDDO

Optimizing Compilers for Modern Architectures

ENDDO
ENDDO

Motivational Example
DO J = 1, M

DO I = 1, N

T$(I) = 0.0

DO K = 1,L

T$(I) = T$(I) + A(I,K) * B(K,J)() () (,) (,)

ENDDO

C(I,J) = T$(I)

ENDDO

ENDDO

Optimizing Compilers for Modern Architectures

Motivational Example II
• Loop Distribution gives us:
DO J = 1, M

DO I = 1, N
T$(I) = 0.0

ENDDO
DO I = 1, N

DO K = 1,L
T$(I) = T$(I) + A(I,K) * B(K,J)

ENDDO
ENDDO
DO I = 1, N

C(I,J) = T$(I)
ENDDO

ENDDO

Optimizing Compilers for Modern Architectures

Motivational Example III
Finally, interchanging I and K loops, we get:
DO J = 1, M

$(1) 0 0T$(1:N) = 0.0

DO K = 1,L

T$(1:N) = T$(1:N) + A(1:N,K) * B(K,J)

ENDDO

C(1:N,J) = T$(1:N)

ENDDO

A l f t f ti d• A couple of new transformations used:
—Loop interchange
—Scalar Expansion

Optimizing Compilers for Modern Architectures

Loop Interchange
DO I = 1, N

DO J = 1, M
S A(I,J+1) = A(I,J) + B • DV: (=, <)(,) (,) D (,)

ENDDO
ENDDO

• Applying loop interchange:Applying loop interchange:
DO J = 1, M

DO I = 1, N
S A(I,J+1) = A(I,J) + B • DV: (<, =)(,) (,) (,)

ENDDO
ENDDO

• leads to:leads to:
DO J = 1, M

S A(1:N,J+1) = A(1:N,J) + B

ENDDO

Optimizing Compilers for Modern Architectures

ENDDO

Loop Interchange
• Loop interchange is a reordering transformation
• Why?

—Think of statements being parameterized with the corresponding
iteration vector

—Loop interchange merely changes the execution order of these
statementsstatements.

— It does not create new instances, or delete existing instances

DO J = 1 MDO J = 1, M

DO I = 1, N

S <some statement>

ENDDOENDDO

ENDDO

• If interchanged, S(2, 1) will execute before S(1, 2)

Optimizing Compilers for Modern Architectures

Loop Interchange: Safety
• Safety: not all loop interchanges are safe

DO I = 1, M

DO J = 1, N

A(I,J+1) = A(I+1,J) + B

ENDDO

ENDDO

• Direction vector (<, >)

• If we interchange loops, we violate the dependence

Optimizing Compilers for Modern Architectures

Loop Interchange: Safety
• Theorem 5.1 Let D(i,j) be a direction vector for a dependence in

a perfect nest of n loops. Then the direction vector for the
same dependence after a permutation of the loops in the nest is m p f p m f p
determined by applying the same permutation to the elements of
D(i,j).

• The direction matrix for a nest of loops is a matrix in which
each row is a direction vector for some dependence between
statements contained in the nest and every such direction y
vector is represented by a row.

Optimizing Compilers for Modern Architectures

Loop Interchange: Safety
DO I = 1, N

DO J = 1, M

DO K = 1 LDO K = 1, L

A(I+1,J+1,K) = A(I,J,K) + A(I,J+1,K+1)

ENDDO

ENDDOENDDO

ENDDO

• The direction matrix for the loop nest is:
< < =

< = >

• Theorem 5.2 A permutation of the loops in a perfect nest is
legal if and only if the direction matrix after the same legal if and only if the direction matrix, after the same
permutation is applied to its columns, has no ">" direction as
the leftmost non-"=" direction in any row.

• Follows from Theorem 5 1 and Theorem 2 3

Optimizing Compilers for Modern Architectures

Follows from Theorem 5.1 and Theorem 2.3

Scalar Expansion
DO I = 1, N

S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T

ENDDO

• Scalar Expansion:
DO I = 1, N

S1 T$(I) = A(I)
S2 A(I) = B(I)
S3 B(I) = T$(I)3 () $()

ENDDO
T = T$(N)

• leads to:
S1 T$(1:N) = A(1:N)
S2 A(1:N) = B(1:N)
S3 B(1:N) = T$(1:N)

Optimizing Compilers for Modern Architectures

T = T$(N)

Scalar Expansion: Safety
• Scalar expansion is always safe
• When is it profitable?

—Naïve approach: Expand all scalars, vectorize, shrink all unnecessary
expansions.

—However, we want to predict when expansion is profitable

Optimizing Compilers for Modern Architectures

Scalar Expansion: Drawbacks
• Expansion increases memory requirements
• Solutions:

—Expand in a single loop
—Forward substitution:

DO I = 1, N
T = A(I) + A(I+1)
A(I) = T + B(I)

ENDDO

DO I = 1, N
A(I) = A(I) + A(I+1) + B(I)

ENDDO

Optimizing Compilers for Modern Architectures

Scalar Renaming
DO I = 1, 100

S1 T = A(I) + B(I)

S2 C(I) = T + T

S3 T = D(I) - B(I)

S4 A(I+1) = T * T4

ENDDO

• Renaming scalar T:
DO I = 1, 100

S1 T1 = A(I) + B(I)

S C(I) = T1 + T1S2 C(I) = T1 + T1

S3 T2 = D(I) - B(I)

S4 A(I+1) = T2 * T2

Optimizing Compilers for Modern Architectures

ENDDO

Scalar Renaming
• will lead to:
S3 T2$(1:100) = D(1:100) - B(1:100)

S4 A(2:101) = T2$(1:100) * T2$(1:100)

S1 T1$(1:100) = A(1:100) + B(1:100)

S2 C(1:100) = T1$(1:100) + T1$(1:100)

T = T2$(100)

Optimizing Compilers for Modern Architectures

