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Fine-Grained Parallelism

Techniques to enhance fine-grained parallelism:
• Loop Interchange

S l  E i  • Scalar Expansion 
• Scalar Renaming
• Array RenamingArray Renaming
• Node Splitting
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Can we do better?
• Codegen: tries to find parallelism using transformations of loop 

distribution and statement reordering
• If  d l ith l  t i i  li  d d  l   i  • If we deal with loops containing cyclic dependences early on in 

the loop nest, we can potentially vectorize more loops

• Goal in Chapter 5: To explore other transformations to exploit 
parallelism 
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Motivational Example
DO J = 1, M

DO I = 1, N
T = 0.0
DO K = 1,L,

T = T + A(I,K) * B(K,J)
ENDDO
C(I,J) = T

ENDDO
ENDDO

codegen will not uncover any vector operations. However, by 
scalar expansion, we can get:
DO J = 1, M

DO I = 1, N
T$(I) = 0.0
DO K = 1,L,

T$(I) = T$(I) + A(I,K) * B(K,J)
ENDDO
C(I,J) = T$(I)

ENDDO
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ENDDO
ENDDO



Motivational Example
DO J = 1, M

DO I = 1, N

T$(I) = 0.0

DO K = 1,L

T$(I) = T$(I) + A(I,K) * B(K,J)( ) ( ) ( , ) ( , )

ENDDO

C(I,J) = T$(I)

ENDDO

ENDDO
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Motivational Example II
• Loop Distribution gives us:
DO J = 1, M

DO I = 1, N
T$(I) = 0.0

ENDDO
DO I = 1, N

DO K = 1,L
T$(I) = T$(I) + A(I,K) * B(K,J)

ENDDO
ENDDO
DO I = 1, N

C(I,J) = T$(I)
ENDDO

ENDDO
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Motivational Example III
Finally, interchanging I and K loops, we get:
DO J = 1, M

$(1 ) 0 0T$(1:N) = 0.0

DO K = 1,L

T$(1:N) = T$(1:N) + A(1:N,K) * B(K,J)

ENDDO

C(1:N,J) = T$(1:N)

ENDDO

A l  f  t f ti  d• A couple of new transformations used:
—Loop interchange
—Scalar Expansion
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Loop Interchange
DO I = 1, N

DO J = 1, M
S       A(I,J+1) = A(I,J) + B           • DV:  (=, <)( , ) ( , ) D ( , )

ENDDO
ENDDO

• Applying loop interchange:Applying loop interchange:
DO J = 1, M

DO I = 1, N
S      A(I,J+1) = A(I,J) + B             • DV:  (<, =)( , ) ( , ) ( , )

ENDDO
ENDDO

• leads to:leads to:
DO J = 1, M

S   A(1:N,J+1) = A(1:N,J) + B

ENDDO
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ENDDO



Loop Interchange
• Loop interchange is a reordering transformation
• Why?

—Think of statements being parameterized with the corresponding 
iteration vector

—Loop interchange merely changes the execution order of these 
statementsstatements.

— It does not create new instances, or delete existing instances

DO J = 1 MDO J = 1, M

DO I = 1, N

S    <some statement>

ENDDOENDDO

ENDDO

• If interchanged, S(2, 1) will execute before S(1, 2)

Optimizing Compilers for Modern Architectures



Loop Interchange: Safety
• Safety: not all loop interchanges are safe

DO I = 1, M

DO J = 1, N

A(I,J+1) = A(I+1,J) + B

ENDDO

ENDDO

• Direction vector (<, >) 

• If we interchange loops, we violate the dependence
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Loop Interchange: Safety
• Theorem 5.1 Let D(i,j) be a direction vector for a dependence in 

a perfect nest of n loops. Then the direction vector for the 
same dependence after a permutation of the loops in the nest is m p f p m f p
determined by applying the same permutation to the elements of 
D(i,j).

• The direction matrix for a nest of loops is a matrix in which 
each row is a direction vector for some dependence between 
statements contained in the nest and every such direction y
vector is represented by a row.
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Loop Interchange: Safety
DO I = 1, N

DO J = 1, M

DO K = 1 LDO K = 1, L

A(I+1,J+1,K) = A(I,J,K) + A(I,J+1,K+1)

ENDDO

ENDDOENDDO

ENDDO

• The direction matrix for the loop nest is:
<  <  =

<  =  >

• Theorem 5.2 A permutation of the loops in a perfect nest is 
legal if and only if the direction matrix  after the same legal if and only if the direction matrix, after the same 
permutation is applied to its columns, has no ">" direction as 
the leftmost non-"=" direction in any row.

• Follows from Theorem 5 1 and Theorem 2 3
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Follows from Theorem 5.1 and Theorem 2.3



Scalar Expansion
DO I = 1, N

S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T

ENDDO

• Scalar Expansion:
DO I = 1, N

S1 T$(I) = A(I)
S2 A(I) = B(I)
S3 B(I) = T$(I)3 ( ) $( )

ENDDO
T = T$(N)

• leads to:
S1 T$(1:N) = A(1:N)
S2 A(1:N) = B(1:N)
S3 B(1:N) = T$(1:N)
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T = T$(N)



Scalar Expansion: Safety
• Scalar expansion is always safe
• When is it profitable? 

—Naïve approach: Expand all scalars, vectorize, shrink all unnecessary 
expansions.

—However, we want to predict when expansion is profitable
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Scalar Expansion: Drawbacks
• Expansion increases memory requirements
• Solutions:

—Expand in a single loop
—Forward substitution:

DO I = 1, N
T = A(I) + A(I+1)
A(I) = T + B(I)

ENDDO

DO I = 1, N
A(I) = A(I) + A(I+1) + B(I)

ENDDO
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Scalar Renaming
DO I = 1, 100

S1 T = A(I) + B(I)

S2 C(I) = T + T

S3 T = D(I) - B(I)

S4 A(I+1) = T * T4

ENDDO

• Renaming scalar T:
DO I = 1, 100

S1 T1 = A(I) + B(I)

S C(I) = T1 + T1S2 C(I) = T1 + T1

S3 T2 = D(I) - B(I)

S4 A(I+1) = T2 * T2
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ENDDO



Scalar Renaming
• will lead to:
S3 T2$(1:100) = D(1:100) - B(1:100)

S4 A(2:101) = T2$(1:100) * T2$(1:100)

S1 T1$(1:100) = A(1:100) + B(1:100)

S2 C(1:100) = T1$(1:100) + T1$(1:100)

T = T2$(100)
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