Enhancing Fine-Grained Parallelism

Chapter 5 of Allen and Kennedy

Optimizing Compilers for Modern Architectures

Fine-Grained Parallelism

Techniques to enhance fine-grained parallelism:
* Loop Interchange

* Scalar Expansion

* Scalar Renaming

* Array Renaming

* Node Splitting

Optimizing Compilers for Modern Architectures

Can we do better?

* Codegen: tries to find parallelism using transformations of loop
distribution and statement reordering

* If we deal with loops containing cyclic dependences early on in
the loop nest, we can potentially vectorize more loops

* Goal in Chapter 5: To explore other transformations to exploit
parallelism

Optimizing Compilers for Modern Architectures

Motivational Example

DO J =1, M
DO 1 =1, N
T =0.0
DO K = 1,L
T =T+ A(1.K) * B(K,J)
ENDDO
C(1,d) =T
ENDDO
ENDDO

codegen will not uncover any vector operations. However, by
scalar expansion, we can get:

DOJ =1, M
DO I =1, N
T$(1) = 0.0
DO K = 1,L
T$(1) = T$(1) + A(1,K) * B(K,J)
ENDDO
c(1,d) = T$(D
ENDDO
ENDDO

Optimizing Compilers for Modern Architectures

Motivational Example

DOJ =1, M
DO I = 1, N
T$(1) = 0.0
DO K = 1,L
T$(1) = T$(1) + A(L,K) * B(K,J)
ENDDO
c(1,d) = T$(I)
ENDDO
ENDDO

Optimizing Compilers for Modern Architectures

Motivational Example Il

* Loop Distribution gives us:
DO J =1, M
DO I =1, N
T$(1) = 0.0
ENDDO
DO I =1, N
DO K = 1,L
T$(1) = T$(1) + A(L,K) * B(K,J)
ENDDO
ENDDO
DO I =1, N
C(1,3) = T$(1)
ENDDO
ENDDO

Optimizing Compilers for Modern Architectures

Motivational Example Il

Finally, interchanging I and K loops, we get:

DO J =1, M
T$(1:N) = 0.0
DO K = 1,L
T$(1:N) = T$(1:N) + A(L:N,K) * B(K,J)
ENDDO
C(1:N,J) = T$(1:N)
ENDDO

* A couple of new transformations used:
—Loop interchange
— Scalar Expansion

Optimizing Compilers for Modern Architectures

Loop Interchange

boO I =1, N
PO J =1, M
S A(l1,J+1) = A(1,J) + B - DV: (=, <)
ENDDO
ENDDO

* Applying loop interchange:
DO J =1, M
DO I =1, N
S AC1,3+1) = A(1,J) + B - DV: (<, =)
ENDDO
ENDDO

* leads to:

DO J =1, M
S A(1:N,J+1) = A(1:N,J) + B
ENDDO

Optimizing Compilers for Modern Architectures

Loop Interchange

* Loop interchange is a reordering transformation
* Why?

—Think of statements being parameterized with the corresponding
iteration vector

—Loop interchange merely changes the execution order of these
statements.

— It does not create new instances, or delete existing instances

DO J =1, M
DO I = 1, N
S <some statement>
ENDDO
ENDDO

* If interchanged, S(2, 1) will execute before S(1, 2)

Optimizing Compilers for Modern Architectures

Loop Interchange: Safety

* Safety: not all loop interchanges are safe

DO 1 =1, M
DO J =1, N
A(1,J+1) = A(1+1,J) + B
ENDDO
ENDDO

* Direction vector (<, >)

* If we interchange loops, we violate the dependence

Optimizing Compilers for Modern Architectures

Loop Interchange: Safety

* Theorem 5.1 Let D(i,j) be a direction vector for a dependence in
a perfect nest of n loops. Then the direction vector for the
same dependence after a permutation of the loops in the nest is
determined by applying the same permutation to the elements of

D(i.j)-

* The direction matrix for a nest of loops is a matrix in which
each row is a direction vector for some dependence between
statements contained in the nest and every such direction
vector is represented by a row.

__]
Optimizing Compilers for Modern Architectures

Loop Interchange: Safety

DO I =1, N
DOJ =1, M
DO K =1, L
A(1+1,3+1,K) = A(1,J,K) + A(1,J+1,K+1)
ENDDO
ENDDO
ENDDO

* The direction matrix for the loop nest is:

< = >

< < =
* Theorem 5.2 A per'mu'ra'an of the Joops in a perfect nest is
legal if and only if the direction matrix, after the same
permutation is applied to its columns, has no ">" direction as
the leftmost non-"=" direction in any row.

* Follows from Theorem 5.1 and Theorem 2.3

Optimizing Compilers for Modern Architectures

Scalar Expansion

DO I =1, N
S, T = AC(D)
S, A(1) = B(I)
S, B(I) = T
ENDDO

* Scalar Expansion:
DO I =1, N

S, T$C(1) = A(D)

S, AC) = B(I)

S, B(1) = T$(I)

ENDDO
T = TS(N)
* leads to:
S, T$(L:N) = A(L:N)
S, A(1:N) = B(1:N)
S, B(1:N) = T$(1:N)
T = TS(N)

Optimizing Compilers for Modern Architectures

Scalar Expansion: Safety

* Scalar expansion is always safe

* When is it profitable?

—Naive approach: Expand all scalars, vectorize, shrink all unnecessary
expansions.

—However, we want to predict when expansion is profitable

Optimizing Compilers for Modern Architectures

Scalar Expansion: Drawbacks

* Expansion increases memory requirements

* Solutions:
—Expand in a single loop
—Forward substitution:
DO I =1, N
T = A(1) + A(1+1)

A(l) =T + B(I)
ENDDO

DO I = 1, N

A(D = A(D) + A(1+1D) + B(D)
ENDDO

Optimizing Compilers for Modern Architectures

Scalar Renaming

DO I = 1, 100
S, T =A() + B()
S, C()=T+T
S, T =D() - Bl
S, A(I+1) =T * T
ENDDO

* Renaming scalar T:

DO I = 1, 100

s, Tl =A() + B()

S, C(l) =T1L + T1

S, T2 = D) - B(I)

S, A(I+1) = T2 * T2
ENDDO

Optimizing Compilers for Modern Architectures

Scalar Renaming

* will lead to:

S, T2$(1:100) = D(1:100) - B(1:100)

S, A(2:101) = T2$(1:100) * T2$(1:100)

S, T1$(1:100) = A(1:100) + B(1:100)

S, C(1:100) = T1$(1:100) + T1$(1:100)
T = T2$(100)

__]
Optimizing Compilers for Modern Architectures

